Abstract

We performed modeling of the collision of two spherical nuclei resulting in capture. For this aim the stochastic differential equations are used with the white or colored noise and with the instant or retarding friction, respectively. The dissipative forces are proportional to the squared derivative of the strong nucleus-nucleus interaction potential (SnnP). The SnnP is calculated in the framework of the double folding approach with the density-dependent M3Y NN-forces. Calculations performed for 28 Si+ 144 Sm reaction show that accounting for the fluctuations typically reduces the capture cross sections by not more than 10%. In contradistinction, the influence of the memory effects is found resulting in about 20% enhancement of the cross section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.