Abstract

In this article, we investigate the robust stabilization for an interconnected power system with a doubly fed induction generator (DFIG)-based wind farm via retarded sampled-data control (RSDC). Generally, the interconnected power system with DFIG-based wind farm considers a mechanical torque, and load deviation, which is taken into disturbance of the proposed model. The main concern of this article is to stabilize and mitigate the frequency fluctuation, and speed deviation of the DFIG-based wind farm. To do this, a more general sampled-data control strategy, involving the effect of constant time delay is considered and the sampling period is assumed to vary within an interval. In addition, the defined disturbances are attenuated by using the H∞ performance-based RSDC scheme. An appropriate Lyapunov Krasovskii functional (LKF) is constructed to obtain the delay-dependent sufficient conditions in the form of linear matrix inequalities (LMIs) by using the RSDC strategy. The obtained conditions ensure the proposed closed-loop system is asymptotically stable under the designed controller. Finally, simulation results and comparative results are given to illustrate the effectiveness of the designed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.