Abstract

Groundwater drawn daily from shallow alluvial sands by millions of wells over large areas of South and Southeast Asia exposes an estimated population of over 100 million to toxic levels of arsenic (1). Holocene aquifers are the source of widespread arsenic poisoning across the region (2, 3). In contrast, Pleistocene sands deposited in this region more than ~12,000 years ago mostly do not host groundwater with high levels of arsenic. Pleistocene aquifers are increasingly used as a safe source of drinking water (4) and it is therefore important to understand under what conditions low levels of arsenic can be maintained. Here we reconstruct the initial phase of contamination of a Pleistocene aquifer near Hanoi, Vietnam. We demonstrate that changes in groundwater flow conditions and the redox state of the aquifer sands induced by groundwater pumping caused the lateral intrusion of arsenic contamination over 120 m from Holocene aquifer into a previously uncontaminated Pleistocene aquifer. We also find that arsenic adsorbs onto the aquifer sands and that there is a 16–20 fold retardation in the extent of the contamination relative to the reconstructed lateral movement of groundwater over the same period. Our findings suggest that arsenic contamination of Pleistocene aquifers in South and Southeast Asia as a consequence of increasing levels of groundwater pumping have been delayed by the retardation of arsenic transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call