Abstract

The recently proposed model by Perrier and co-workers [J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3455] to account for retardation effects in dithiobenzoate-mediated reversible addition–fragmentation chain transfer (RAFT) polymerization of styrene has been tested experimentally. According to this model, retardation is caused by cross-termination of very short radicals only. Polymerizations were conducted employing a macroazoinitiator and a polymeric RAFT agent based on cumyl dithiobenzoate, thereby effectively eliminating all short radicals from the system. The results show, in basic agreement with the model, that there is very little, if any, retardation in dithiobenzoate-mediated RAFT polymerization of styrene in the absence of short radicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.