Abstract

The performance of an in situ-forming injectable membrane designed to retain antibody molecules in vivo is described. The system entails an aqueous mixture of peptide amphiphiles (referred to as"EAK16-II" and "EAKH6") and intermediate proteins (anti-H6 antibody and protein A/G) through which therapeutic IgG molecules are colocalized and oriented. Scanning electron micrographs show IgG molecules localized on the EAK16-II/EAKH6 membrane. IgG were captured via specific interactions and remained biologically active in vitro. Upon administration into mice subcutaneously, the amphiphilic peptides coassembled into stable His-tags displaying materials locally. The system was shown to retain in vivo a fluorescent dye-labeled IgG in two epithelial tumor lines. IgG coadministered with the system were found to remain in 4T1 mouse mammary tumors for up to 120 h, while free antibody was cleared within the first 24 h. Decreased clearance was also found in B16 melanoma established in mouse footpads. These studies demonstrated that the immobilizing mechanism was effective in enhancing the retention of IgG locally in vivo. The injectable system may be used to enhance the delivery of immune modulatory antibodies in tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.