Abstract

The mechanisms by which pollen is digested by honey bees are incompletely understood. Potential methods are thought to include pseudogermination, mechanical disruption, enzymatic breakdown, or osmotic shock. Understanding the role of pseudogermination in this process has been hampered by a lack of tools demonstrating retention of metabolic activity in pollen collected by honey bees. Here, we show that pollen collected by honey bees produces reactive oxygen species (ROS) at robust levels upon germination, suggesting that ROS is a suitable marker of this process in pollen. ROS can be readily found in the digestive tract of honey bees and is localized to pollen grains within the lumen. Finally, manipulating pollen levels in the midgut can change ROS levels in the digestive tract. These data provide evidence of retained metabolic activity in bee-collected pollen that lends support to pseudogermination as a mechanism for pollen digestion in honey bees, and points to novel approaches for better understanding of pollen digestion in this species and beyond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.