Abstract

As a prominent platform possessing the properties of superconductivity (SC) and charge density wave (CDW), transition-metal dichalcogenides (TMDCs) have attracted considerable attention for a long time. Moreover, extensive efforts have been devoted for exploring the SC and/or the interplay between SC and CDW in TMDCs in the past few decades. Here, we systematically investigate the electronic properties and structural evolution of 1T-TaSe2 under pressure. With increasing pressure, pressure-induced superconductivity is observed at ∼2.6 GPa. The superconductive transition temperature (Tc) increases with the suppression of the CDW state to the maximum value of ∼5.1 K at 21.8 GPa and then decreases monotonously up to the highest pressure of 57.8 GPa. 1T-TaSe2 transforms into a monoclinic C2/m structure above 19 GPa. The monoclinic phase coexists with the original phase as the pressure is released under ambient conditions and the retainable superconductivity with Tc = 2.9 K is observed in the released sample. We suggest that the retained superconductivity can be ascribed to the retention of the superconductive high-pressure monoclinic phase in the released sample. Our findings demonstrate that both the structure and CDW order are related to the superconductivity of TaSe2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call