Abstract
Cued Speech (CS) is an augmented lip reading system complemented by hand coding, and it is very helpful to the deaf people. Automatic CS recognition can help communications between the deaf people and others. Due to the asynchronous nature of lips and hand movements, fusion of them in automatic CS recognition is a challenging problem. In this work, we propose a novel re-synchronization procedure for multi-modal fusion, which aligns the hand features with lips feature. It is realized by delaying hand position and hand shape with their optimal hand preceding time which is derived by investigating the temporal organizations of hand position and hand shape movements in CS. This re-synchronization procedure is incorporated into a practical continuous CS recognition system that combines convolutional neural network (CNN) with multi-stream hidden markov model (MSHMM). A significant improvement of about 4.6% has been achieved retaining 76.6% CS phoneme recognition correctness compared with the state-of-the-art architecture (72.04%), which did not take into account the asynchrony issue of multi-modal fusion in CS. To our knowledge, this is the first work to tackle the asynchronous multi-modal fusion in the automatic continuous CS recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.