Abstract

Liver fibrosis is a wound healing response characterized by excessive accumulation of extracellular matrix proteins. This study aimed to investigate the effects of resveratrol treatment on the TGF-β/SMAD signaling pathway and related biochemical parameters, apoptosis, and liver regeneration phenobarbital-CCl4 induced hepatic fibrosis rat model. This model was created through phenobarbital and CCl4 (0.2-0.35 ml/kg). Resveratrol (1 mg/kg/day) was administered to the fibrosis and control groups. Immunohistochemical staining was performed to evaluate αSMA, TGF-β1, and PCNA in liver tissue. The TUNEL method and Masson's Trichome staining were used to determine apoptosis and collagen accumulation. AST, ALP, ALT, total protein, and total bilirubin levels were measured to determine biochemical status. SMAD2, SMAD3, SMAD4, and SMAD7 expression levels were measured to determine TGF-β1 related hepatic fibrosis. The SMAD2, SMAD3, and SMAD4 mRNA expression levels were increased and the SMAD7 mRNA expression level was decreased in the fibrosis control group. The SMAD7 mRNA expression level was higher in the phenobarbital-CCl4 induced resveratrol treated group. Increased biochemical parameters indicating hepatic damage, increased number of apoptotic cells, and collagen accumulation surrounding the central vein were observed in the fibrosis group compared with the other groups. It was concluded that administration of resveratrol ameliorates the adverse effects of hepatic fibrosis by regulating biochemical parameters, controlling TGF-β1/SMAD signaling, enhancing tissue regeneration, and reducing apoptosis in liver cells. Resveratrol can be a beneficial option for the prevention of liver damage in a phenobarbital-CCl4 induced hepatic fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call