Abstract

Hepatocellular carcinoma (HCC), one of the most frequent and deadliest cancers, has been increasing considerably in the United States. In the absence of a proven effective therapy for HCC, novel chemopreventive strategies are urgently needed to lower the current morbidity and mortality of HCC. Recently, we have reported that resveratrol, a compound present in grapes and red wine, significantly prevents diethylnitrosamine (DENA)-induced liver tumorigenesis in rats, although the mechanism of action is not completely understood. In the present study, we have examined the underlying mechanisms of resveratrol chemoprevention of hepatocarcinogenesis by investigating the effects of resveratrol on oxidative damage and inflammatory markers during DENA-initiated rat liver carcinogenesis. There was a significant increase in hepatic lipid peroxidation and protein oxidation in carcinogen control animals compared with their normal counterparts at the end of the study (20 weeks). Elevated expressions of inducible nitric oxide synthase and 3-nitrotyrosine were noticed in the livers of the same animals. Dietary resveratrol (50-300 mg/kg) administered throughout the study reversed all the aforementioned markers in a dose-responsive fashion in rats challenged with DENA. Resveratrol also elevated the protein and mRNA expression of hepatic nuclear factor E2-related factor 2 (Nrf2). Results of the present investigation provide evidence that attenuation of oxidative stress and suppression of inflammatory response mediated by Nrf2 could be implicated, at least in part, in the chemopreventive effects of this dietary agent against chemically induced hepatic tumorigenesis in rats. The outcome of this study may benefit the development of resveratrol in the prevention and intervention of human HCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call