Abstract

BackgroundResveratrol extracted from grape has been an ideal alternative drug in the therapy of different cancers including colorectal cancer (CRC). Since the underlying mechanisms of resveratrol on the invasion and metastasis of CRC have not been fully elucidated, and epithelial-to-mesenchymal transition (EMT) is a key process associated with the progression of CRC, here we aimed to investigate the potential mechanism of resveratrol on the inhibition of TGF-β1-induced EMT in CRC LoVo cells.MethodsWe investigated the anticancer effect of resveratrol against LoVo cells in vitro and in vivo. In vivo, the impact of resveratrol on invasion and metastasis was investigated by mice tail vein injection model and mice orthotopic transplantation tumor model. In vivo imaging was applied to observe the lungs metastases, and hemaoxylin-eosin (HE) staining was used to evaluate metastatic lesions. In vitro, impact of resveratrol on the migration and invasion of LoVo cells was evaluated by transwell assay. Inhibition effect of resveratrol on TGF-β-induced EMT was examined by morphological observation. Epithelial phenotype marker E-cadherin and mesenchymal phenotype marker Vimentin were detected by western blot and immunofluorescence. Promoter activity of E-cadherin was measured using a dual-luciferase assay kit. mRNA expression of Snail and E-cadherin was measured by RT-PCR.ResultsWe demonstrated that, resveratrol inhibited the lung metastases of LoVo cells in vivo. In addition, resveratrol reduced the rate of lung metastases and hepatic metastases in mice orthotopic transplantation. In vitro, TGF-β1-induced EMT promoted the invasion and metastasis of CRC, reduced the E-cadherin expression and elevated the Vimentin expression, and activated the TGF-β1/Smads signaling pathway. But resveratrol could inhibit the invasive and migratory ability of LoVo cells in a concentration-dependent manner, increase the expression of E-cadherin, repress the expression of Vimentin, as well as the inhibition of TGF-β1/Smads signaling pathway. Meanwhile, resveratrol reduced the level of EMT-inducing transcription factors Snail and the transcription of E-cadherin during the initiation of TGF-β1-induced EMT.ConclusionsOur new findings provided evidence that, resveratrol could inhibit EMT in CRC through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression, and this might the potential mechanism of resveratrol on the inhibition of invasion and metastases in CRC.

Highlights

  • Resveratrol extracted from grape has been an ideal alternative drug in the therapy of different cancers including colorectal cancer (CRC)

  • Our new findings provided evidence that, resveratrol could inhibit epithelial-to-mesenchymal transition (EMT) in CRC through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression, and this might the potential mechanism of resveratrol on the inhibition of invasion and metastases in CRC

  • The underlying molecular mechanisms through which resveratrol inhibits migration and invasion of CRC cells have not been fully elucidated, and since EMT is a key process associated with the progression of CRC, we aimed to investigate the potential mechanism of resveratrol on the inhibition of TGF-β1-induced EMT in CRC cells

Read more

Summary

Introduction

Resveratrol extracted from grape has been an ideal alternative drug in the therapy of different cancers including colorectal cancer (CRC). Since the underlying mechanisms of resveratrol on the invasion and metastasis of CRC have not been fully elucidated, and epithelial-to-mesenchymal transition (EMT) is a key process associated with the progression of CRC, here we aimed to investigate the potential mechanism of resveratrol on the inhibition of TGF-β1-induced EMT in CRC LoVo cells. Colorectal cancer (CRC) is one of the leading causes of cancer-associated death in the worldwide [1]. Epithelial-to-Mesenchymal Transition (EMT), a biological process occurs in various types of epithelial cancers including CRC, is associated largely with increased invasion and metastases [4,5,6]. Various signaling pathways associated with EMT were activated, such as TGF-β/Smads signaling pathway we focused on

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call