Abstract
Acute bacterial meningitis (ABM) is a serious disease with severe neurological sequelae. The intense calcium-mediated microglial activation and subsequently pro-inflammatory cytokine release plays an important role in eliciting ABM-related oxidative damage. Considering resveratrol possesses significant anti-inflammatory and anti-oxidative properties, the present study aims to determine whether resveratrol would exert beneficial effects on hippocampal neurons following ABM. ABM was induced by inoculating Klebsiella pneumoniae into adult rats intraventricularly. The time-of-flight secondary ion mass spectrometry (TOF-SIMS), Griffonia simplicifolia isolectin-B4 (GSA-IB4) and ionized calcium binding adaptor molecule 1 (Iba1) immunohistochemistry, enzyme-linked immunosorbent assay as well as malondialdehyde (MDA) measurement were used to examine the calcium expression, microglial activation, pro-inflammatory cytokine level, and extent of oxidative stress, respectively. In ABM rats, strong calcium signaling associated with enhanced microglial activation was observed in hippocampus. Increased microglial expression was coincided with intense production of pro-inflammatory cytokines and oxidative damage. However, in rats receiving resveratrol after ABM, the calcium intensity, microglial activation, pro-inflammatory cytokine and MDA levels were all significantly decreased. Quantitative data showed that much more hippocampal neurons were survived in resveratrol-treated rats following ABM. As resveratrol successfully rescues hippocampal neurons from ABM by suppressing the calcium-mediated microglial activation, therapeutic use of resveratrol may act as a promising strategy to counteract the ABM-induced neurological damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Immunology, Microbiology and Infectious Diseases
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.