Abstract

An increased susceptibility to non-alcoholic fatty liver disease (NAFLD) in female rat offspring that experienced prenatal ethanol exposure (PEE) has been previously demonstrated. The present study further investigated the potential mechanism. Based on the results from both fetal and adult studies of offspring rats that experienced PEE (4 g/kg/day), the fetal weight, serum glucose and triglyceride levels decreased significantly and hepatocellular ultra-structure was altered. Fetal livers exhibited inhibited expression and activity of sirtuin 1 (SIRT1), enhanced expression of lipogenic genes: sterol regulatory element binding protein 1c (SREBP1c), fatty acid synthase (FASN), acetyl-coenzyme A carboxylase α (ACCα), stearyl-coenzyme A desaturase 1 (SCD1). In adult offspring fed with high-fat diet, the PEE offspring revealed obviously catch-up growth, increased food intake, elevated serum metabolic phenotypes, suppressed hepatic SIRT1-SREBP1c pathway, and formation of NAFLD. Resveratrol (the chemical activator of SIRT1) could remarkably reverse the serum metabolic phenotypes and alleviate the hepatocyte steatosis in relation to the PEE offspring through activating the hepatic SIRT1-SREBP1c pathway. Therefore, increased susceptibility to diet-induced NAFLD in PEE offspring appears to be mediated by intrauterine programming of hepatic lipogenesis via the SIRT1-SREBP1c pathway. This altered programming effect could partially be reversed by resveratrol intervention after birth in PEE offspring rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.