Abstract

Resveratrol (RSV) is a natural polyphenol with anti-obesity effects. However, the mechanisms of anti-obesity remain unclear due to its low bioavailability. Recent evidence demonstrates that gut microbiota plays a key role in obesity. This spurred us to investigate whether the anti-obesity effects of RSV are related to modulations in the gut microbiota and metabolic functions. Here, RSV significantly improved metabolic phenotype and intestinal oxidative stress in the high-fat diet (HFD)-fed mice. A multi-omics approach was used to systematically profile the microbial signatures at both the phylogenetic and functional levels using 16S rRNA gene sequencing and metagenome. At the phylogenetic level, RSV treatment significantly modulated the gut microbiota composition in HFD-fed mice, characterized with increased Blautia abundance and decreased Desulfovibrio and Lachnospiraceae_NK4A136_group abundance. At the functional level, RSV significantly decreased the enrichment of pathways linked to host metabolic disease and increased the enrichment of pathways involved in the generation of small metabolites. Besides, the fecal microbiota transplantation experiment showed anti-obesity and microbiota-modulating effects similar to those observed in the oral RSV-feeding experiment. Furthermore, metabolomic analysis and antibiotic treatment verified that 4-hydroxyphenylacetic acid (4-HPA) and 3-hydroxyphenylpropionic acid (3-HPP) were the two gut metabolites of RSV, which contribute to improving lipid metabolism in vitro. Moreover, the content of 4-HPA and 3-HPP exhibited strong correlation with the intestinal oxidative state. We concluded that the RSV-mediated alteration of gut microbiota, related gut metabolites and redox state of the intestinal environment contributed to prevention of metabolic syndrome in HFD-fed mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.