Abstract

Osteoarthritis (OA), a degenerative joint disease with high prevalence among older people, occurs from molecular or nanometer level and extends gradually to higher degrees of the ultrastructure of cartilage, finally resulting in irreversible structural and functional damages. This report aims to use atomic force microscopy (AFM) to investigate the protective effects of resveratrol (RV), a drug with good anti-inflammatory properties, on cellular morphology, membrane architecture, cytoskeleton, cell surface adhesion and stiffness at nanometer level in sodium nitroprusside (SNP)-induced apoptotic chondrocytes, a typical cellular OA model. CCK-8 assay showed that 100 μM RV significantly prevented SNP-induced cytotoxicity. AFM imaging and quantitative analysis showed that SNP potently induced chondrocytes changes including shrunk, round, lamellipodia contraction and decrease in adherent junctions among cells, as well as the destruction of biomechanics: 90% decrease in elasticity and 30% decrease in adhesion. In addition, confocal imaging analysis showed that SNP induced aggregation of the cytoskeleton and decrease in the expression of cytoskeletal proteins. More importantly, these SNP-induced damages to chondrocytes could be potently prevented by RV pretreatment. Interestingly, the biomechanical changes occurred before morphological changes could be clearly observed during SNP-induced apoptosis, indicating that the biomechanics of cellular membrane may be a more robust indicator of cell function. Collectively, our data demonstrate that RV prevents SNP-induced apoptosis of chondrocytes by regulating actin organization, and that AFM-based technology can be developed into a powerful and sensitive method to study the interaction mechanisms between chondrocytes and drugs.

Highlights

  • Osteoarthritis (OA) is known as a degenerative arthritis or degenerative joint disease, which affects 20 million people in U.S [1]

  • The extracted cartilages were firstly minced into small pieces and Chondrocytes were isolated by enzymatic digestion of 0.25% Trypsin in phosphate buffered solution (PBS) for 1 h and 0.2% type II collagenase in Dulbecco’s modified Eagle medium (DMEM) for 4–6 h

  • The changes in cell viability induced by sodium nitroprusside (SNP) and RV To detect the protecting effects of RV on chondrocytes, we firstly established the OA model by exposure of chondrocytes to SNP, an inorganic compound with the formula Na2[Fe(CN)5NO]N2H2O

Read more

Summary

Introduction

Osteoarthritis (OA) is known as a degenerative arthritis or degenerative joint disease, which affects 20 million people in U.S [1]. The treatment for OA mainly focuses on relieving pains and symptoms, and improving function of cartilage. There are no treatments to cure OA or reduce the degradation of cartilage. Current treatments for OA are restricted to anti-inflammatory drugs which bring numerous side effects and are only temporarily effective to the patients. To find safe and highly effective drugs for OA treatment are very urgent. Resveratrol (3,5,49 -trihydroxystilbene, RV), a polyphenol derived from grapes, berries, peanuts and other plants, has been shown to possess anti-proliferative, anti-oxidative and antiinflammatory properties [2], and these effects are associated with the suppression of inflammation, arthritis and cardiovascular diseases [3]. RV can be as a potent safe drug for OA treatment, but the mechanisms are still unclear

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.