Abstract

Arsenic trioxide (As2 O3 ) is commonly used to treat acute promyelocytic leukemia and solid tumors. However, the clinical application of the agent is limited by its cyto- and genotoxic effects on normal cells. Thus, relief of As2 O3 toxicity in normal cells is essentially necessary for improvement of As2 O3 -mediated chemotherapy. In this study, we have identified a series of protective effects of resveratrol against As2 O3 -induced oxidative damage in normal human bronchial epithelial (HBE) cells. We showed that treatment of HBE cells with resveratrol significantly reduced cellular levels of DNA damage, chromosomal breakage, and apoptosis induced by As2 O3 . The effect of resveratrol against DNA damage was associated with a decreased level of reactive oxygen species and lipid peroxidation in cells treated by As2 O3 , suggesting that resveratrol protects against As2 O3 toxicity via a cellular anti-oxidative stress pathway. Further analysis of the roles of resveratrol demonstrated that it modulated biosynthesis, recycling, and consumption of glutathione (GSH), thereby promoting GSH homeostasis in HBE cells treated by As2 O3 . This was further supported by results showing that resveratrol prevented an increase in the activities and levels of caspases, Fas, Fas-L, and cytochrome c proteins induced by As2 O3 . Our study indicates that resveratrol relieves As2 O3 -induced oxidative damage in normal human lung cells via maintenance of GSH homeostasis and suppression of apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call