Abstract

The purpose of this study was to investigate the possible use of resveratrol (Res) to reverse abnormal osteogenesis/osteoclastogenesis activity that occurs during femoral head osteonecrosis and to explore the detailed mechanisms. Application of Res to bone marrow-derived mesenchymal stem cells in vitro promoted survival, inhibited apoptosis, and downregulated expression of reactive oxygen species expression. Moreover, Res application was associated with elevated microRNA-146a (miR-146a) expression, osteogenic differentiation, and suppressed osteoclastic differentiation, which were markedly reversed by miR-146a inhibitor. Histopathological observations and micro-computed tomography scanning results indicated that the Res-treated group had lower incidence of osteonecrosis and better bone microstructure than the untreated group. Res inhibited osteoclastogenesis through altering the levels of sirtuin1 (Sirt1), nuclear transcription factor-κB (NF-κB), and receptor activator of NF-κB ligand (RANKL). Simultaneously, Res treatment improved bone formation and increased β-catenin and runt-related transcription factor 2 (Runt2) expression levels, while reducing forkhead box class O (FOXO) family protein levels. The results of our study suggest that Res prevents steroid-induced osteonecrosis by upregulating miR-146a, and thereby stabilizes osteogenesis/osteoclastogenesis homeostasis via Wnt/FOXO and Sirt1/NF-κB pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.