Abstract

The possibility of combining the health benefits of kafirin and polyphenols and improving the bioavailability of resveratrol using hollow kafirin nanoparticles via gallic acid crosslinking was investigated. The size, morphology, charge state, loading efficiency, physicochemical stability, and redispersity after lyophilization of hollow resveratrol-loaded kafirin nanoparticles formed via gallic acid crosslinking were characterized and compared with their solid counterparts and those without crosslinking. The nanoparticles formed were anionic spheres with an average diameter of <100 nm when loading amounts of resveratrol were less than 20%. The hollow nanoparticles were homogenous and still achieved stable colloidal dispersion after lyophilization. The hollow nanoparticles crosslinked with gallic acid displayed stability against pancreatin and delayed release in stimulated digestion. The results suggested that hollow kafirin nanoparticles could be a favorable colloidal delivery system for incorporating resveratrol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call