Abstract
Rhizoma polygoni cuspidate, used as a traditional Chinese herb, offered the therapeutic potential for cardiovascular diseases. Resveratrol, extracted from root of the rhizoma polygoni cuspidate has sparked increasing interest in therapeutic application. Resveratrol was shown to exert a variety of pharmacological effects including cardioprotective and cancer chemopreventive properties. However, its mechanisms of the action are not completely understood. The aim of this study was to investigate the molecular mechanism of resveratrol on preventing cardiac fibroblasts from proliferative and hypertrophic response induced by angiotensin II. Cell proliferation and cytotoxicity were detected by methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) release assay, respectively. Hypertrophic response of cardiac fibroblasts was measured by mRNA expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Resveratrol (25, 50, 75, and 100 μM) inhibited cardiac fibroblasts proliferation in a dose- and time-dependent manner compared with angiotensin II group ( P < 0.01), and the inhibitory effects were blocked by pretreatment with N G-nitro-l-arginine methyl ester ( l-NAME) and 1 H-[1,2,4]-oxadiazole-[4,3-a]-quinoxalin-1-one (ODQ). Resveratrol increased nitric oxide (NO) and nitric oxide synthase (NOS) levels in culture medium, increased intracellular cyclic GMP (cGMP) level in cardiac fibroblasts, and decreased ANP and BNP levels in culture medium. The mRNA expression of ANP and BNP was suppressed by resveratrol. These results suggested that resveratrol inhibited cardiac fibroblasts proliferation induced by angiotensin II, and the inhibitory effect might be associated with the activation of NO–cGMP signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.