Abstract

Cisplatin (CP) is a widely used drug in treatment of solid tumors. However, the use of CP was hampered by its serious side effects especially nephrotoxicity. This study aims to investigate the effect of resveratrol (RES) on CP-induced nephrotoxicity, particularly, the effect of RES on CP pharmacokinetics (PKs). Male white albino rats were divided to four group’s six rats each. The first group received (1%) tween 80 in normal saline and served as control. The second group received RES (30 mg kg−1) per day for 14 consecutive day’s i.p. The third and fourth groups were given a single i.p. injection of CP (6 mg kg−1) with or without pre-treatment of RES (30 mg kg−1per day for 14 consecutive days), respectively. Following administration of CP, plasma, urine and kidney platinum concentration were monitored to study PKs of CP. Five days after the CP injection, rats were killed; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CP treatment significantly deteriorated kidney functions with subsequent alteration in redox balance of the kidney. On the other hand, RES successfully ameliorated CP-induced kidney injury and recovered normal kidney tissue redox status. Importantly, while RES pre-treatment did not significantly alter the plasma CP level, it dramatically decreased the urine concentration of CP and lowered its accumulation into the kidneys. Moreover, it increased CP plasma half-life (t1/2) with subsequent decrease in its elimination rate constant, indicating an important role of PKs modulation in RES protection against CP-induced renal damage. Taken together, RES may protect the kidney tissue from the deleterious effects of CP through constringe of CP renal accumulation and enhancement of CP-induced oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.