Abstract

Resveratrol is a stilbene present in different plant species and exerting numerous beneficial effects, including prevention of diabetes and attenuation of some diabetic complications. Its inhibitory effect on insulin secretion was recently documented, but the exact mechanism underlying this action remains unknown. Experiments employing diazoxide and a high concentration of K(+) revealed that, in depolarized pancreatic islets incubated for 90 min with resveratrol (1, 10, and 100 microM), insulin secretion stimulated by glucose and leucine was impaired. The attenuation of the insulin secretory response to 6.7 mM glucose was not abrogated by blockade of intracellular estrogen receptors and was found to be accompanied by diminished islet glucose oxidation, enhanced lactate production, and reduced ATP levels. Glucose-induced hyperpolarization of the mitochondrial membrane was also reduced in the presence of resveratrol. Moreover, in depolarized islets incubated with 2.8 mM glucose, activation of protein kinase C or protein kinase A potentiated insulin release; however, under these conditions, resveratrol was ineffective. Further studies also revealed that, under conditions of blocked voltage-dependent calcium channels, the stilbene reduced insulin secretion induced by a combination of glucose with forskolin. These data demonstrate that resveratrol 1) inhibits the amplifying pathway of insulin secretion, 2) exerts an insulin-suppressive effect independently of its estrogenic/anti-estrogenic activity, 3) shifts islet glucose metabolism from mitochondrial oxidation to anaerobic,4) fails to abrogate insulin release promoted without metabolic events, and 5) does not suppress hormone secretion as a result of the direct inhibition of Ca(2+) influx through voltage-dependent calcium channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.