Abstract

Cancer therapy through anticancer drugs and radiotherapy is associated with several side effects as well as tumor resistance to therapy. The genotoxic effects of chemotherapy and radiotherapy may lead to genomic instability and increased risk of second cancers. Furthermore, some responses in the tumor may induce the exhaustion of antitumor immunity and increase the resistance of cancer cells to therapy. Administration of low-toxicity adjuvants to protect normal tissues and improve therapy efficacy is an intriguing strategy. Several studies have focused on natural-derived agents for improving the antitumor efficiency of radiotherapy, chemotherapy, and novel anticancer drugs such as immunotherapy and targeted cancer therapy. Resveratrol is a naturally occurring substance with intriguing antioxidant, cardioprotective, anti-diabetes, and antitumor properties. Resveratrol has been demonstrated to modulate tumor resistance and mitigate normal tissue toxicity following exposure to various drugs and ionizing radiation. Compelling data suggest that resveratrol may be an appealing adjuvant in combination with various anticancer modalities. Although the natural form of resveratrol has some limitations, such as low absorption in the intestine and low bioavailability, several experiments have demonstrated that using certain carriers, such as nanoparticles, can increase the therapeutic efficacy of resveratrol in preclinical studies. This review highlights various effects of resveratrol that may be useful for cancer therapy. Consequently, we describe how resveratrol can protect normal tissue from genomic instability. In addition, the various mechanisms by which resveratrol exerts its antitumor effects are addressed. Moreover, the outcomes of combination therapy with resveratrol and other anticancer agents are reviewed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call