Abstract
ObjectivesCardiac protection of resveratrol is related to the improvement of mitochondrial function through sirtuin1 (SIRT1) activation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation. Asymmetric dimethylarginine (ADMA) as an endogenous inhibitor of nitric oxide synthases is associated with diabetic cardiovascular complications and has a cross-talk with lysine acetylation. This study was to determine whether resveratrol reverses ADMA's pathogenic role in diabetic cardiomyopathy and elucidate the underlying mechanisms in type 2 diabetic (T2DM) rats and cardiomyocytes. MethodsT2DM Rats were induced by high-fat diet plus small-dose streptozotocin injection (35 mg/kg). Resveratrol was given by gavage (50 mg/kg/d) to some rats for 16w. Cardiac function was measured by echocardiography, and PGC-1α acetylation was detected by immunoprecipitation. Mitochondrial DNA and ATP contents were analyzed to evaluate mitochondrial biogenesis and function. ResultsEndogenous ADMA accumulation and its signal disorders were associated with cardiac and mitochondrial dysfunctions in accompany with increased PGC-1α acetylation and decreased PGC-1α expression in the myocardium of T2DM rats compared with control rats. Resveratrol treatment attenuated ADMA accumulation, cardiac and mitochondrial dysfunctions in parallel with reversing altered PGC-1α expression and acetylation in the myocardium of T2DM rats. Exogenous ADMA not only reproduced mitochondrial dysfunction and cardiac hypertrophy but also reduced PGC-1α expression and enhanced PGC-1α acetylation in accompany of down-regulating SIRT1 and up-regulating acetyltransferase expression, all of which could be prevented by resveratrol pretreatment in cardiomyocytes. ConclusionsThese results indicate that ADMA promotes PGC-1α acetylation as a potential therapeutic target for resveratrol of management diabetic cardiomyopathy in T2DM rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.