Abstract
BackgroundResveratrol is a non flavonoid polyphenol compound present in many plants and fruits and, at especially high concentrations, in the grape berries of Vitis vinifera. This compound has a strong bioactivity and its cytoprotective action has been demonstrated, however at high concentrations the drug exhibits also an effective anti-proliferative action. We recently showed its ability to abolish the effects of oxidative stress in cultured cells. In this work we assayed the bioactivity of resveratrol as antiproliferative and antiviral drug in cultured fibroblasts. Studies by other Authors showed that this natural compound inhibits the proliferation of different viruses such as herpes simplex, varicella-zoster and influenza A. The results presented here show an evident toxic activity of the drug at high concentrations, on the other hand at sub-cytotoxic concentrations, resveratrol can effectively inhibit the synthesis of polyomavirus DNA. A possible interpretation is that, due to the damage caused by resveratrol to the plasma membrane, the transfer of the virus from the endoplasmic reticulum to the nucleus, may be hindered thus inhibiting the production of viral DNA.MethodsThe mouse fibroblast line 3T6 and the human tumor line HL60 were used throughout the work. Cell viability and vital cell count were assessed respectively, by the MTT assay and Trypan Blue staining. Cytotoxic properties and evaluation of viral DNA production by agarose gel electrophoresis were performed according to standard protocols.ResultsOur results show a clear dose dependent both cytotoxic and antiviral effect of resveratrol respectively at high and low concentrations. The cytotoxic action is exerted towards a stabilized cell-line (3T6) as well as a tumor-line (HL60). Furthermore the antiviral action is evident after the phase of virion entry, therefore data suggest that the drug acts during the synthesis of the viral progeny DNA.ConclusionResveratrol is cytotoxic and inhibits, in a dose dependent fashion, the synthesis of polyomavirus DNA in the infected cell. Furthermore, this inhibition is observed at non cytotoxic concentrations of the drug. Our data imply that cyto-toxicity may be attributed to the membrane damage caused by the drug and that the transfer of polyomavirus from the endoplasmic reticulum to the cytoplasm may be hindered. In conclusion, the cytotoxic and antiviral properties of resveratrol make it a potential candidate for the clinical control of proliferative as well as viral pathologies.
Highlights
Resveratrol is a non flavonoid polyphenol compound present in many plants and fruits and, at especially high concentrations, in the grape berries of Vitis vinifera
The results presented here show that RV exhibits a cytotoxic activity and has an antiviral property since it efficiently inhibits the synthesis of Py DNA
The drug is dissolved in 0.02% DMSO in PBS but, at this low concentration, the organic solvent has no effects on cell survival, as shown by the second bar from the left
Summary
Resveratrol is a non flavonoid polyphenol compound present in many plants and fruits and, at especially high concentrations, in the grape berries of Vitis vinifera This compound has a strong bioactivity and its cytoprotective action has been demonstrated, at high concentrations the drug exhibits an effective anti-proliferative action. We focused our attention on a natural complex mixture, known as MEX, obtained by methanolic extraction of whole neem oil [13]. This oil is prepared from the seeds of Azadirachta indica and has been extensively used in Ayurveda, Unani and Homoeopathic medicine possibly for centuries [16,17]. Preliminary experiments performed in our laboratory suggest that MEX has an antiviral activity (Berardi et al, in preparation); in any case a similar activity of neem leaf extracts was reported in a model of Dengue virus [20]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental & Clinical Cancer Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.