Abstract
We have previously shown that resveratrol possesses cardioprotective effect, which may be attributed to its ability to (i) stimulate nitric oxide production and (ii) free radical scavenging activity. Since resveratrol is one of the major components of certain varieties of red grapes, these events may underlie the cardioprotective effects thought to be obtained from moderate red wine consumption. Here we report resveratrol enhanced myocardial angiogenesis both in vivo and in vitro by induction of vascular endothelial growth factor (VEGF), which was regulated by thioredoxin-1 (Trx-1) and heme oxygenase-1 (HO-1). Human coronary arteriolar endothelial cells exposed to resveratrol or Trx-1 on Matrigel demonstrated significantly accelerated tubular morphogenesis with induction of HO-1 and VEGF expression. This angiogenic response was repressed by tin-protoporphyrin IX (SnPP), an HO-1 inhibitor, along with downregulation of VEGF expression. However Trx-1 expression was not affected by SnPP. Again, rat neonatal cardiomyocytes treated with resveratrol significantly expressed Trx-1, HO-1 as well as VEGF. Rats were orally administered with resveratrol (1 mg/kg per day) for 14 days and then underwent permanent left anterior descending coronary artery (LAD) occlusion to document similar pro-angiogenic effect. Our results demonstrated that pretreatment with resveratrol markedly reduced infarct size 24 h after myocardial infarction (MI) and increased capillary density in the peri-infarct myocardium along with better left ventricular function 4 days after MI compared with vehicle-treated control. Concomitantly, resveratrol-treated myocardium after MI significantly induced Trx-1, HO-1 and VEGF expression. This effect was blocked by SnPP. Our findings suggest that resveratrol mediates cardioprotection and neovascularization through Trx-1–HO-1–VEGF pathway in rat ischemic myocardium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.