Abstract

The emergence of various lethal bacterial infections and their adherence to medical devices are major public health concerns. The increased bacterial exposure and titer are accompanied by the inappropriate use of antibiotics that sometimes lead to antibiotic resistance, and therefore, a drug-free antibacterial approach is required. Several nanoparticles (NPs) have been developed as antibacterial and antibiofilm coating agents, which can overcome different drug resistance mechanisms by inhibiting the important processes related to bacterial virulence potential. However, developing safe and biocompatible nanomaterials (NMs) for these applications has remained a major challenge due to their poorly understood mechanism of action. In this work, biogenic silica NPs were modified with glutathione (GSH) to form GSH@SNP (∼80 ± 15 nm) for targeting the bacterial cell surface and biofilm. GSH@SNP was loaded with resveratrol to obtain Res_GSH@SNP (∼124 ± 15 nm) that enhances the antibacterial activity of the NPs against Staphylococcus aureus and Escherichia coli by ∼51 and ∼49%, respectively, compared to GSH@SNP. Res_GSH@SNP is responsible for binding to the bacterial cell surface receptors that interrupt the cell membrane potential, leading to reactive oxygen species (ROS) generation, membrane disruption, and DNA damage and eventually resulting in antibacterial activity. Moreover, the antibiofilm activity of Res_GSH@SNP has been found to result from the interaction of the NPs with the abundant carbohydrates present on the biofilm surface. To check the practical utility of Res_GSH@SNP, these were further evaluated as an antibacterial and antibiofilm coating agent for urinary catheters and were found to be effective even after multiple washes. Res_GSH@SNP has been found to exhibit ∼80 ± 1.4% cytocompatibility toward fibroblast NIH-3T3 cells. Overall, this study is expected to pave the way for the development of biocompatible NP-based coating agents for medical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.