Abstract

trans-Resveratrol (RSV) has been shown to have cardioprotective effect during ischemia-reperfusion through reactive oxygen species (ROS)-scavenging activity. Elevated ROS has been implicated in the initiation and progression of atherosclerosis. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a major source of vascular ROS formation. In the present study, we show that exposure of vascular endothelial cells (EC) to oxidized low-density lipoproteins (oxLDL) results in elevations of NOX activity and cellular ROS levels. The oxLDL effects are effectively suppressed by RSV or astringinin (AST), either before or after oxLDL exposure. In this study, we show that RSV or AST treatment appears to suppress NOX activity by reducing the membrane association of gp91(phox) and Rac1, two protein species required for the assembly of active NOX complex. Exposure to RSV or AST protects EC from oxidative functional damages, including antiplatelet activity and mononucleocyte adhesion. In addition, ANG II-induced NOX activation is also attenuated. These results suggest that RSV or AST protects EC from oxLDL-induced oxidative stress by both direct ROS scavenging and inhibition of NOX activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.