Abstract

Mechanical ventilation (MV) can result in inflammation and subsequent lung injury. Toll-like receptor (TLR)4 and NF-κB are proposed to play a crucial role in the MV-induced inflammatory response. Resveratrol (RVT) exhibits anti-inflammatory effects in vitro and in vivo supposedly by interfering with TLR4 signaling and NF-κB. In the present study, we investigated the role of RVT in MV-induced inflammation in mice. RVT (10 mg/kg, 20 mg/kg and 40 mg/kg) or vehicle was intraperitoneally administered 1 h before start of MV (4 h, tidal volume 8 ml/kg, positive end-expiratory pressure 1,5 cmH2 O and FiO2 0.4). Blood and lungs were harvested for cytokine analysis. DNA binding activity of transcription factor NF-κB was measured in lung homogenates. MV resulted in elevated pulmonary concentrations of IL-1β, IL-6, keratinocyte-derived chemokine (KC) and NF-κB DNA-binding activity. RVT at 10, 20 and 40 mg/kg reduced NF-κB's DNA-binding activity following MV compared with ventilated controls. However, no differences in cytokine release were found between RVT-treated and control ventilated mice. Similarly, in plasma, MV resulted in elevated concentrations of TNF-α, KC and IL-6, but RVT did not affect cytokine levels. RVT abrogates the MV-induced increase in pulmonary NF-κB activity but does not attenuate cytokine levels. This implies a less prominent role for NF-κB in MV-induced inflammation than previously assumed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.