Abstract
Type 2 diabetes increases the risk for cancer. Centrosome amplification can initiate tumorigenesis. We have described that type 2 diabetes increases the centrosome amplification of peripheral blood mononuclear cells, with high glucose, insulin, and palmitic acid as the triggers, which suggests that centrosome amplification is a candidate biological mechanism linking diabetes to cancer. In this study, we aimed to further investigate the signaling pathways of the diabetes-associated centrosome amplification and to examine whether and how resveratrol inhibits the centrosome amplification. The results showed that treatment with high glucose, insulin, and palmitic acid, alone or in combination, could increase the protein levels of phospho-protein kinase C alpha (p-PKCα), phospho-p38 mitogen-activated protein kinases (p-p38), c-myc, and c-jun, as well as the mRNA levels of c-myc and c-jun. PKCα inhibitor could inhibit the treatment-induced increase in the protein levels of p-p38, c-myc, and c-jun. Inhibitor or siRNA of p38 was also able to inhibit the treatment-induced increase in the levels of p-p38, c-myc, and c-jun. Meanwhile, knockdown of c-myc or c-jun did not alter the treatment-induced increase in the phosphorylation of PKCα or p38. Importantly, inhibition of the phosphorylation of PKCα or p38 and knockdown of c-myc or c-jun could attenuate the centrosome amplification. In diabetic mice, the levels of p-PKCα, p-p38, c-myc, and c-jun were all increased in the colon tissues. Interestingly, resveratrol, but not metformin, was able to attenuate the treatment-induced increase in the levels of p-PKCα, p-p38, c-myc, and c-jun, as well as the centrosome amplification. In conclusion, our results suggest that PKCα-p38 to c-myc/c-jun is the signaling pathway of the diabetes-associated centrosome amplification, and resveratrol attenuates the centrosome amplification by inhibiting this signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.