Abstract

ABSTRACTObjective: The aim of this study was to evaluate the potential molecular mechanism of resveratrol (RSV) that attenuates brain damage from focal cerebral ischemia.Methods and materials: To investigate whether phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway was involved in RSV anti-inflammatory and neuroprotective properties. Middle cerebral artery occlusion (MCAO) animal model was used in this study. Adult male Sprague–Dawley (SD) rats underwent MCAO, and then received treatment with RSV or vehicle after the onset of ischemia. PI3K inhibitor LY294002 was injected intracerebroventricularly to inhibit the PI3K/Akt signaling pathway. Neurological deficit scores and cerebral water content were assessed 24 h after MCAO. The inflammatory factors interleukin (IL)-1β, tumor necrosis factor (TNFα), and cyclooxygenase-2 (COX2) mRNA level were examined by real-time PCR. The enzymatic activity of myeloperoxidase (MPO) was measured 24 h after MCAO. The protein expression of phospho-Akt and COX2 in ischemic brain were determined by western blot.Results: RSV significantly reduced neurological deficit scores, cerebral water content and the enzymatic activity of MPO, all of which were abolished by LY294002 administration. Real-time PCR showed that RSV significantly suppressed the upregulation of the inflammatory factors IL-1β, TNFα, COX2 mRNA levels. RSV significantly inhibited upregulated the protein expression of COX2 24 h after MCAO, which effect was abolished by LY294002 administration.Conclusion: RSV attenuated ischemic brain damage induced by cerebral artery occlusion mainly through PI3K/Akt signaling pathway.Abbreviation: MCAO: Middle cerebral artery occlusion; RSV: resveratrol; PI3K/Akt: phosphatidylinositol 3-kinase/Akt; TNF: tumor necrosis factor; COX2: cyclooxygenase-2; MPO: myeloperoxidase; IL: interleukin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call