Abstract

PurposeResveratrol (Res) is a natural polyphenolic compound found in several plants and reported as a promising biological molecule with effective anti-fibrosis and anti-inflammatory activities. However, the underlying mechanism of Res on systemic sclerosis (SSc) remains unclear. In the study, we identified the key cellular signaling pathways involved in the Res regulatory process on SSc.MethodsRes-targeted genes interaction network was constructed using the STITCH database, and the shared Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in both SSc and Res-targeted genes were then identified. The top five enriched KEGG pathways were visualized by GOplot. KEGG pathways associated with Res-targeted genes were established by Pathway Builder Tool 2.0. Quantitative real-time PCR (qRT-PCR) was used to assess the expression of sirtuin 1 (SIRT1), mammalian targeted of rapamycin (mTOR), and cytokines.ResultsEnrichment analysis of Res-targeted genes showed 79 associated pathways, 27 of which were also involved in SSc. Particularly, SIRT1/mTOR signaling was found as one of the crucial regulatory pathways. In vitro results suggested that SIRT1-mediated mTOR degradation ameliorated bleomycin (BLM)-induced fibrosis and inflammation. Res was capable of elevating the SIRT1 level in fibroblasts and partially reversing mTOR-dependent induction of fibrosis and inflammation.ConclusionThese results indicated that Res is a feasible and effective choice for SSc and therapeutic target of mTOR could be a potential alternative for treatment of SSc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.