Abstract

The pathogenesis of alcoholic fatty liver (AFL) disease is associated with the excessive accumulation of lipids in hepatocytes as well as oxidative stress. Resveratrol (RES), a dietary polyphenol found in red wine and grapes, has been shown to protect against AFL disease. However, the precise mechanisms that lead to this protective effect remain elusive. In this study, we used HepG2 cells to investigate the effects of RES on lipid metabolism and the mechanisms underlying these effects. HepG2 cells were cultured with oleic acid and alcohol for 48 h to induce excessive lipid accumulation. Oil red O staining showed that administration of oleic acid and alcohol induced more lipid accumulation than was observed in the control group, and that RES (15, 45, or 135 μmol/L) treatment reduced intracellular lipid droplets. RES treatment also significantly attenuated hepatic steatosis and lowered levels of intracellular triglycerides (TG). Western blot analysis showed that RES enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) and down-regulated the expression of sterol regulatory element-binding protein 1c (SREBP-1c) and lipin1. However, compound C, an AMPK inhibitor, reversed these effects of RES. In conclusion, RES reduced lipid accumulation and protected HepG2 cells. This effect may be associated with the down-regulation of SREBP-1c and lipin1 expression, increased levels of phosphorylated AMPK and ACC, and the activation of AMPK-lipin1 signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call