Abstract

The oxysterol 27-hydroxycholesterol (27HC) is the first identified endogenous selective estrogen receptor modulator (SERM), which like endogenous estrogen 17β-estradiol (E2) induces the proliferation of estrogen receptor- (ER-) positive breast cancer cells in vitro. However, 27HC differs from E2 in that it shows adverse effects in the nervous system. Our previous study confirmed that 27HC could induce neural senescence by activating phosphorylated signal transducer and activator of transcription, which E2 could not. The purpose of the present study is to investigate whether STAT3 acetylation was involved in 27HC-induced neural senescence. Microglia (BV2 cells) and rat pheochromocytoma cells (PC12 cells) were used in vitro to explore the effect of resveratrol (REV) on 27HC-induced neural senescence. Senescence-associated β-galactosidase (SA-β-Gal) staining was performed using an SA-β-Gal Staining Kit in cells and zebrafish larvae. Zebrafish were used in vivo to assess the effect of 27HC on locomotor behavior and aging. We found that 27HC could induce senescence in neural cells, and REV, which has been employed as a Sirtuin-1 (SIRT1) agonist, could attenuate 27HC-induced senescence by inhibiting STAT3 signaling via SIRT1. Moreover, in the zebrafish model, REV attenuated 27HC-induced locomotor behavior disorder and aging in the spinal cord of zebrafish larvae, which was also associated with the activation of SIRT1-mediated STAT3 signaling. Our findings unveiled a novel mechanism by which REV alleviates 27HC-induced senescence in neural cells and affects zebrafish locomotor behavior by activating SIRT1-mediated STAT3 signaling.

Highlights

  • Cholesterol can be oxidized in the body by the side chain to form oxidized cholesterol

  • We investigated whether Signal transducer and activator of transcription 3 (STAT3) acetylation is involved in 27HCinduced neural cell senescence

  • We found that 27HC increased the number of SA-β-Gal-positive cells

Read more

Summary

Introduction

Cholesterol can be oxidized in the body by the side chain to form oxidized cholesterol. The side chains contain hydroxyl groups and play multiple roles in lipid metabolism. Among the cholesterol oxidation products, the most abundant and studied category is 27-hydroxycholesterol (27HC) [1]. The. 27HC is found almost entirely in the peripheral circulation and can flow into the brain through the blood-brain barrier (BBB). The 27HC plays an important role in maintaining the balance of brain and extracerebral cholesterol [2]. The 27HC is a selective estrogen receptor modulator (SERM). The 27HC functions like endogenous estrogen 17β-estradiol (E2) and induces the proliferation of estrogen receptor- (ER-)

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call