Abstract

Resveratrol is a kind of iPolyphenols widely existing in herbal medicine. Here we aim to investigate whether resveratrol can reduce the degree of myocardial ischemia/reperfusion (IR) injury and inhibit the development of oxidative stress, and elucidate the molecular mechanism of resveratrol in protecting myocardial cells. The primary rat cardiomyocytes were used to establish an ischemia/reperfusion model in vitro, and a series of routine biochemical experiments were conducted to explore the antioxidant and anti-apoptotic effects of resveratrol in myocardial ischemia-reperfusion injury. Compared with that of the simulated ischemia-refusion (SIR) group, cell viability in the SIR and resveratrol co-treatment groups increased significantly (P < 0.001), the release of lactate dehydrogenase (LDH) and creatine kinase MB (CKMB) decreased, the positive rate of reactive oxygen species (ROS) in cardiomyocytes decreased, and the concentration of catalase and glutathione peroxidase increased significantly (P < 0.001). Besides, resveratrol can activate PI3K/AKT signaling pathway. PI3K siRNA can inhibit the PI3K/AKT signaling mediated by resveratrol. The addition of resveratrol can significantly increase the activity of mitochondrial superoxide dismutase (SOD) and reduce the malondialdehyde (MDA), which indicates that the oxidative damage of mitochondria induced by resveratrol was significantly weakened. The mitochondrial functional changes induced by resveratrol can be reversed by PI3K siRNA. In conclusion, our study shows that resveratrol can reduce ROS in cardiomyocytes by PI3K/AKT signaling pathway activation, and effectively inhibit the apoptosis of cardiomyocytes, thus having a direct protective effect on cardiomyocytes under SR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.