Abstract

While resuscitative endovascular balloon occlusion of the aorta (REBOA) is contraindicated in patients with aortic injuries, this technique may benefit poly-trauma patients with less extreme thoracic injuries. The purpose of this study was to characterize the effects of thoracic injury on hemodynamics during REBOA and the changes in pulmonary contusion over time in a swine model. Twelve swine were anesthetized, instrumented, and randomized to receive either a thoracic injury with 5 impacts to the chest or no injury. All animals underwent controlled hemorrhage of 25% blood volume followed by 45min of Zone 1 REBOA. Animals were then resuscitated with shed blood, observed during a critical care period, and euthanized after 6h of total experimental time. There were no differences between the groups at baseline. The only difference after 6 h was a lower hemoglobin in the thoracic trauma group (8.4 ± 0.8 versus 9.4 ± 0.6g/dL, P = 0.04). The average proximal mean arterial pressures were significantly lower in the thoracic trauma group during aortic occlusion [103 (98-108) versus 117 (115-124) mmHg, P = 0.04]. There were no differences between the pulmonary contusion before REBOA and at the end of the experiment in size (402 ± 263 versus 356 ± 291mL, P = 0.782) or density (- 406 ± 127 versus - 299 ± 175 HFU, P = 0.256). Thoracic trauma blunted the proximal arterial pressure augmentation during REBOA but had minimal impacts on resuscitative outcomes. This initial study indicates that REBOA does not seem to exacerbate pulmonary contusion in swine, but blunt thoracic injuries may attenuate the expected rises in proximal blood pressure during REBOA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call