Abstract

This study assumed that key degraders of functional bacterial community were prone to enter into the viable but non-culturable (VBNC) state under high saline phenolic conditions, and resuscitation-promoting factor (Rpf) could strengthen these degraders for better performances. Based on these assumptions, Rpf was used to enhance salt-tolerant phenol-degrading capability of functional populations in activated sludge. Results suggested that Rpf accelerated the start-up process during sludge domestication, and significantly enhanced salt-tolerant phenol-degrading capability. High-throughput sequencing showed that the resuscitation and stimulation functions of Rpf linked mainly to the genus Corynebacterium within the phylum Actinobacteria, and the genera Proteiniphilum and Petrimonas within the phylum Bacteroidete. These key functional populations contributed to better phenol-degrading capabilities under high salinity conditions. This study indicated that Rpf is a promising additive for improving biological treatment performance of saline phenolic wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.