Abstract
Many high-affinity peptide antagonists of MDM2 and MDMX have been reported as activators of the tumor suppressor protein p53 with therapeutic potential. Unfortunately, peptide activators of p53 generally suffer poor proteolytic stability and low membrane permeability, posing a major pharmacological challenge to anticancer peptide drug development. We previously obtained several potent dodecameric peptide antagonists of MDM2 and MDMX termed PMIs, one of which, TSFAEYWALLSP, bound to MDM2 and MDMX at respective affinities of 0.49 and 2.4 nM. Here we report the development of gold nanoparticles (Np) as a membrane-traversing delivery vehicle to carry PMI for anticancer therapy. Np-PMI was substantially more active in vitro than Nutlin-3 in killing tumor cells bearing wild-type p53, and effectively inhibited tumor growth in metastasis in a mouse homograft mode of melanoma and a patient-derived xenograft model of colon cancer with a favorable safety profile. This clinically viable drug delivery strategy can be applied not only to peptide activators of p53 for cancer therapy, but also to peptide therapeutics in general aimed at targeting intracellular protein-protein interactions for disease intervention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.