Abstract

The Euler-MacLaurin summation formula compares the sum of a function over the lattice points of an interval with its corresponding integral, plus a remainder term. The remainder term has an asymptotic expansion, and for a typical analytic function, it is a divergent (Gevrey-1) series. Under some decay assumptions of the function in a half-plane (resp. in the vertical strip containing the summation interval), Hardy (resp. Abel-Plana) prove that the asymptotic expansion is a Borel summable series, and give an exact Euler-MacLaurin summation formula. Using a mild resurgence hypothesis for the function to be summed, we give a Borel summable transseries expression for the remainder term, as well as a Laplace integral formula, with an explicit integrand which is a resurgent function itself. In particular, our summation formula allows for resurgent functions with singularities in the vertical strip containing the summation interval. Finally, we give two applications of our results. One concerns the construction of solutions of linear dierence equations with a small parameter. And another concerns resurgence of 1-dimensional sums of quantum factorials, that are associated to knotted 3-dimensional objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.