Abstract

The two-point resolution of an optical system is the minimum distance between two point sources that can be estimated with a prescribed precision from measurement in the image plane. When the sources are incoherent, then direct measurement of the optical intensity provides resolution limited by Rayleigh’s curse, i.e., the precision diminishes to zero as the separation is reduced to zero. By using quantum Fisher information bounds on the precision, it was shown recently that estimates based on optimal quantum measurements of the optical field can break Rayleigh’s curse and provide estimates with finite precision even at very small separations. We show here that if the point sources are partially coherent with an unknown real degree of coherence, no matter how small it is, then the curse resurges. Since a Lambertian source is not strictly incoherent, having a correlation width of the order of a wavelength, and light gains coherence as it propagates, Rayleigh’s curse endures as a fundamental dictum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.