Abstract

Contaminated capillary fringe sediments are believed to function as long-term source of U(VI) to Hanford’s 300 Area groundwater uranium plume that discharges to the Columbia River. The deep vadose zone at this site experiences seasonal water table elevation and water compositional changes in response to Columbia River stage. Batch and column desorption experiments of U(VI) were performed on two mildly contaminated sediments from this system that vary in hydrologic position to ascertain their U(VI) release behavior and factors controlling it. Solid phase characterization of the sediments was performed to identify mineralogic and chemical factors controlling U(VI) desorption. Low adsorbed U(VI) concentrations prevented spectroscopic analysis. The desorption behavior of U(VI) was different for the two sediments in spite of similar chemical and textural characteristics, and non-carbonate mineralogy. Adsorption strength and sorbed U(VI) lability was higher in the near-river sediment. The inland sediment displayed low sorbed U(VI) lability (∼10%) and measurable solid-phase carbonate content. Kinetic desorption was observed that was attributed to regeneration of labile U(VI) in the near river sediment, and carbonate mineral dissolution in the inland sediment. The desorption reaction was best described as an equilibrium surface complexation reaction. The noted differences in desorption behavior appear to result from U(VI) contamination and hydrologic history, as well as sediment carbonate content. Insights are provided on the dynamic adsorption/desorption behavior of contaminants in linked groundwater–river systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.