Abstract

We use a systematic effective field theory setup to derive the $b\bar{b}H$ production cross section. Our result combines the merits of both fixed 4-flavor and 5-flavor schemes. It contains the full 4-flavor result, including the exact dependence on the $b$-quark mass, and improves it with a resummation of collinear logarithms of $m_b/m_H$. In the massless limit, it corresponds to a reorganized 5-flavor result. While we focus on $b\bar{b}H$ production, our method applies to generic heavy-quark initiated processes at hadron colliders. Our setup resembles the variable flavor number schemes known from heavy-flavor production in deep-inelastic scattering, but also differs in some key aspects. Most importantly, the effective $b$-quark PDF appears as part of the perturbative expansion of the final result where it effectively counts as an $O(\alpha_s)$ object. The transition between the fixed-order (4-flavor) and resummation (5-flavor) regimes is governed by the low matching scale at which the $b$-quark is integrated out. Varying this scale provides a systematic way to assess the perturbative uncertainties associated with the resummation and matching procedure and reduces by going to higher orders. We discuss the practical implementation and present numerical results for the $b\bar{b}H$ production cross section at NLO+NLL. We also provide a comparison to the corresponding predictions in the fixed 4-flavor and 5-flavor results and the Santander matching prescription. Compared to the latter, we find a slightly reduced uncertainty and a larger central value, with its central value lying at the lower edge of our uncertainty band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.