Abstract
Generalized Bott manifolds (over $\mathbb C$ and $\mathbb R$) have been defined by Choi, Masuda and Suh in [4]. In this article we extend the results of [7] on the topology of real Bott manifolds to generalized real Bott manifolds. We give a presentation of the fundamental group, prove that it is solvable and give a characterization for it to be abelian. We further prove that these manifolds are aspherical only in the case of real Bott manifolds and compute the higher homotopy groups. Furthermore, using the presentation of the cohomology ring with $\mathbb Z_2$-coefficients, we derive a combinatorial characterization for orientablity and spin structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.