Abstract
In a 2008 paper, the first author and Van Tuyl proved that the regularity of the edge ideal of a graph G is at most one greater than the matching number of G. In this note, we provide a generalization of this result to any square-free monomial ideal. We define a 2-collage in a simple hypergraph to be a collection of edges with the property that for any edge E of the hypergraph, there exists an edge F in the 2-collage such that |E∖F|≤1. The Castelnuovo–Mumford regularity of the edge ideal of a simple hypergraph is bounded above by a multiple of the minimum size of a 2-collage. We also give a recursive formula to compute the regularity of a vertex-decomposable hypergraph. Finally, we show that regularity in the graph case is bounded by a certain statistic based on maximal packings of nondegenerate star subgraphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.