Abstract

In order to carry out experimental studies of the process of cutting highly abrasive materials with abrasive reinforced wheels, a dynamometer stand for registering the force load of the author's design of the KNUCA was modified, which made it possible to conduct full-fledged experimental studies taking into account all the valid factors of the interaction of the working environment and the working body during cutting with the supply of water to the cutting zone to dedust the working process The use of refractory bricks is proposed as the working environment, and the abrasive reinforced wheel for cutting highly abrasive materials with a strength of up to 60MPa is used as the working body. As a result of the research conducted for the dynamometric stand for force load registration during the study of the process of cutting highly abrasive materials with an abrasive reinforced wheel, the tangential forces that perform the work of destruction and overcoming friction between the side surfaces of the wheel and the material were analytically determined. According to the results of theoretical studies, it was established that the limits of the change in the resistance to cutting, determined for a natural installation for cutting highly abrasive materials (refractories) with an abrasive reinforced wheel and for a laboratory stand, are the same, and the nature of their change is also similar and related by a similarity coefficient.
 In order to check the adequacy of theoretical calculations, experimental studies of cutting refractory bricks with temporary resistance to uniaxial compression of the rock σв=60 MPa were carried out on a dynamometric stand. The conducted experimental studies fully confirm the adequacy of the theoretical calculations, and the comparison of the theoretical and experimental results of determining the tangential cutting forces showed their sufficient convergence and, accordingly, the legitimacy of using analytical expressions when calculating the power parameters of machines with an abrasive tool. The maximum value of the error in determining the tangential cutting forces theoretically and experimentally on the laboratory bench for recording the cutting forces of highly abrasive materials with abrasive reinforced wheels is Δδ=13,8%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call