Abstract

Several experimental models on adult and newborn animals showed that in cerebral hypoxic-ischemic conditions similar to clinical states the main source of the excessive production of free oxygen radicals is the highly activated xanthine oxidase (XO) enzyme reaction. Long before this data were available, it became known that the main role of allopurinol (AP) is the inhibition of XO. On the basis of these results, many therapeutic trials with AP were performed both in experimental and clinical studies of ischemia and reperfusion. However, it has been shown that only preventive administration of AP has favorable effects. The explanation for the poor results of AP treatment in human fetal brain damage (FBD) cases is that the drug was applied postnatally. The clinical studies performed in healthy laboring mothers whose deliveries were complicated with FBD showed that placental transfer after prenatal administration of AP may be effective in protecting newborns at increased risk of hypoxic-ischemic cerebral damage. Further controlled trials are required to determine if the prophylactic use of the drug might prevent hypoxic-ischemic injuries when the drug is administered immediately prior to impending fetal hypoxia, or even in deliveries at risk of developing hypoxia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call