Abstract

The antitumor indole–indoline alkaloids of the evergreen Catharanthus roseus—namely vinblastine and vincristine—are widely used in chemotherapy of cancer. Many efforts were made to synthesize more efficient derivatives with less side-effect. The 14,15-cyclopropane derivative of vinblastine was synthesized successfully by a five-step procedure starting from vindoline. Vincristine, vinorelbine and several derivatives condensed with a cyclopropane ring were synthesized. Various hybrid molecules were prepared by the coupling reaction of vindoline and methyl ester of tryptophan, which were conjugated by carrier peptides of octaarginine. Studying the halogenation reactions of vindoline and catharanthine some fluorine derivatives were obtained which showed promising antitumor activity on various tumor types. The synthesis of the Aspidospermane alkaloid bannucine and 5′-epibannucine were carried out using N-acyliminium intermediates. The same intermediate was also applied in the first synthesis of sessiline. The research group have synthesized of flavonoid alkaloids: dracocephins A and B. Further three flavonoid alkaloids, namely 8-(2”-pyrrolidinon-5′′-yl)quercetin, 6-(2′′-pyrrolidinon-5′′-yl)-(−)- and 8-(2′′-pyrrolidinon-5′′-yl)-(−)-epicatechin were prepared by acid-catalyzed regioselective Mannich reaction starting from the corresponding flavonoid precursor. Vindoline was also coupled to synthetic pharmacophores, such as triphenylphosphine and various N-heterocycles. Some of these hybrid molecules showed significant antitumor activity. Furthermore, 7-OH and 7-NH modified flavonoid derivatives were synthesized by a regioselective alkylation followed by Smiles rearrangement and hydrolysis.

Highlights

  • Considering the drastic change in the biologic activity of this rather large molecule was caused by a minor structural modification; it can be concluded that this C=C double bond has an important role in the biologic effect. These compounds can be seen appropriate for cyclopropanation, the question is coming up, how the biologic activities change in the case of replacing this double bond with cyclopropane ring having a similar electron structure. This was the reason to propose the synthesis of new vinblastine derivatives condensed with cyclopropane ring in position 14,15

  • As a continuation of our work we aimed to synthesize vindoline (1) steroid hybrids presuming that the lipophilic steroid vector can facilitate Vinca alkaloids to pass through the cell membranes and reach higher bioavailability

  • After the encouraging results derived from the conjugation of natural pharmacophores and Vinca alkaloids, our research project was to combine vindoline (1) with well-known synthetic pharmacophores for example triphenylphosphine and certain N-heterocycles such as morpholine, piperazine and N-methylpiperazine

Read more

Summary

Derivatives Condensed the Three-Membered Rings

It was observed recently that the saturation of the carbon–carbon double bond in position 14,15 of vinblastine (3) by catalytic hydrogenation decreased the biologic effect almost with two orders of magnitude [14]. Considering the drastic change in the biologic activity of this rather large molecule was caused by a minor structural modification; it can be concluded that this C=C double bond has an important role in the biologic effect. Since that, these compounds can be seen appropriate for cyclopropanation, the question is coming up, how the biologic activities change in the case of replacing this double bond with cyclopropane ring having a similar electron structure. These compounds can be seen appropriate for cyclopropanation, the question is coming up, how the biologic activities change in the case of replacing this double bond with cyclopropane ring having a similar electron structure This was the reason to propose the synthesis of new vinblastine derivatives condensed with cyclopropane ring in position 14,15. The 1-N-formyl-14,15-cyclopropanovinorelbine (13) shows an important activity and significant selectivity on COLO-205 colon cancer cell line [23]

Vinca Hybrid Molecules Containing Amino Acid Esters
Vinca Hybrid Molecules Containing Steroid Vectors
Findings
Vinca Hybrid Molecules Containing Synthetic Pharmacophores
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call