Abstract

A high-fidelity synthetic diagnostic has been developed for the ITER core x-ray crystal spectrometer diagnostic based on x-ray ray tracing. This synthetic diagnostic has been used to model expected performance of the diagnostic, to aid in diagnostic design, and to develop engineering tolerances. The synthetic model is based on x-ray ray tracing using the recently developed xicsrt ray tracing code and includes a fully three-dimensional representation of the diagnostic based on the computer aided design. The modeled components are: plasma geometry and emission profiles, highly oriented pyrolytic graphite pre-reflectors, spherically bent crystals, and pixelated x-ray detectors. Plasma emission profiles have been calculated for Xe44+, Xe47+, and Xe51+, based on an ITER operational scenario available through the Integrated Modelling & Analysis Suite database, and modeled within the ray tracing code as a volumetric x-ray source; the shape of the plasma source is determined by equilibrium geometry and an appropriate wavelength distribution to match the expected ion temperature profile. All individual components of the x-ray optical system have been modeled with high-fidelity producing a synthetic detector image that is expected to closely match what will be seen in the final as-built system. Particular care is taken to maintain preservation of photon statistics throughout the ray tracing allowing for quantitative estimates of diagnostic performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.