Abstract

Experimental results from a four-element, linear, half-wavelength spacing, adaptive-array antenna under the control of the least mean square (LMS) algorithm are presented. The array is found to be capable of nulling a 70-MHz signal to -35 dB below a desired signal over a 5-MHz bandwidth. The antenna processing gain is constant over a desired signal-to-jammer signal power ratio range from -20 dB to 5 dB. A sharp reduction in processing gain is observed for angular separations between jammer and desired signal of less than 10°. Antenna patterns taken with weights set in 300 iterations of the LMS algorithm show that the one strong, one weak jammer combination has a longer weight convergence time and reduced processing gain compared with a two strong jammers combination. Contours of constant desired signal-to-jammer signal power ratio, after adaptive antenna processing, reveal a complex shape for communication between air and ground due to the finite angular resolution of the adaptive antenna.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call