Abstract

A detailed aeromagnetic survey carried out across the northeast Newfoundland margin clearly shows the presence of sea floor spreading anomalies 25 to 34. Correlation of these anomalies with synthetic profiles shows an increase in the rate of spreading soon after anomaly 27 time. Three fracture zones can be identified by dislocations in the magnetic anomalies; their positions are confirmed on the depth to basement map of this region. An eastward extension of the southernmost fracture zone at latitude 49 N matches well with the Faraday Fracture Zone across the Mid Atlantic Ridge, and with a basement ridge known as Pastouret Ridge mapped off Goban Spur. By combining the present survey data with the previously collected shipborne measurements, we have also traced the westward continuation of the Charlie-Gibbs Fracture Zone under the Newfoundland shelf. A large amplitude magnetic anomaly lies along the margin and separates two zones with different magnetic characteristics: long wavelength small amplitude anomalies on the landward side, and quasi lineated anomalies on the seaward side. Seismic data compilations show that this large anomaly coincides with the ocean-continent boundary at most places north of Flemish Cap. Modelling of the magnetic anomalies indicate that the large amplitude anomaly is caused by the juxtaposition of highly magnetized oceanic crust against weakly magnetized continental crust; this situation is similar to that observed across the Goban Spur margin, which is a conjugate of the Flemish Cap margin. The presence of highly magnetized oceanic crust landward of anomaly 34 and within the Cretaceous Magnetic Quiet Zone is attested to by the presence of similar large amplitude anomalies south of the Flemish Cap and Goban Spur regions, but these do not mark the ocean-continent transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call