Abstract
An n-core partition is an integer partition whose Young diagram contains no hook lengths equal to n. We consider partitions that are simultaneously a-core and b-core for two relatively prime integers a and b. These are related to abacus diagrams and the combinatorics of the affine symmetric group (type A). We observe that self-conjugate simultaneous core partitions correspond to the combinatorics of type C, and use abacus diagrams to unite the discussion of these two sets of objects.In particular, we prove that 2n- and (2mn+1)-core partitions correspond naturally to dominant alcoves in the m-Shi arrangement of type Cn, generalizing a result of Fishel–Vazirani for type A. We also introduce a major index statistic on simultaneous n- and (n+1)-core partitions and on self-conjugate simultaneous 2n- and (2n+1)-core partitions that yield q-analogs of the Coxeter–Catalan numbers of type A and type C.We present related conjectures and open questions on the average size of a simultaneous core partition, q-analogs of generalized Catalan numbers, and generalizations to other Coxeter groups. We also discuss connections with the cyclic sieving phenomenon and q,t-Catalan numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.